SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS(16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II-B.Tech& I-SemRegulation:R16

UNIT – I

MATHEMATICAL LOGIC

1. a) Explain conjuction and disjuction with suitable examples. [5M]	
b) Define tautology and contradiction with examples.	[5M]
2. a)Show that (a) $(\neg P \land \neg Q \land R) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ [5]	5M](b)
$(P \to Q) \to Q) \Rightarrow P \lor Q$ without constructing truth table [5M]	
3. a)Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R, P$ are consistent [4M]	
b) Give the converse, inverse and contrapositive of the proposition $P \rightarrow (Q \land R)$. [3M]
c) Show that $(P \to Q) \land ((Q \to R) \Rightarrow (P \to Q) [3M]$	
4. a)What is principle disjunctive normal form? Obtain the PDNF of	
$P \to ((P \to Q) \land \neg(\neg Q \lor \neg P))$	5M]
b) What is principle conjunctive normal form? Obtain the PCNF of	
$(\neg P \to R) \land (Q \leftrightarrow P)$	5M
5.(a) Show that $S \lor R$ is a tautologically implied by	
$(P \lor Q) \land (P \to R) \land (Q \to S)$	5M
(b)Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises	
$P \lor Q, Q \to R, P \to Mand \neg M$	[5M]
6.(a) Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)(P(x) \land (\exists x)(Q(x) [5M]))$	
(b) Show that $(\forall x)(P(x) \to Q(x)) \land (\forall x)(Q(x) \to R(x)) \Rightarrow (\forall x)(P(x) \to R(x))$ [5	[M]
7.(a) Define Quantifiers and types of Quantifiers with examples.	[6M]
(b) Show that $(\exists x) M(x)$ follows logically from the premises	
$(\forall x)(H(x) \rightarrow M(x)) and (\exists x)H(x)$	[^{4M]}
8.a)Use indirect method of proof to prove that	
$(\forall x)(P(x) \lor Q(x)) \Longrightarrow (\forall x)P(x) \lor (\exists x)Q(x) [5M]$	

b) Define Maxterms & Minterms of P & Q & give their truth tables	[5M]
9. (a) Define NAND, NOR and XOR and give their truth tables.	[5M]
(b)Define Exclusive & inclusive disjunctions with an example	[5M]
10.a) Show that S is a valid conclusion from the premises $p \to q, p \to r, \neg(q \land r)$ and ($S \lor p$).[5M]
b) Obtain PCNF of A= $(p \land q) \lor (\sim p \land q) \lor (q \land r)$ by constructing PDNF. [5]	M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II-B.Tech& I-Sem

Regulation:R16

UNIT II

RELATIONS, FUNCTIONS, ALGEBRAIC STRUCTURES

1.a) Define an equivalence relation ? If R be a relation in the set of integers Z defined by

 $R = \{ (x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6} \}$.then prove that R isan equivalence relation? [5M] **b**) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. determine a relation R on A by aRb $\Leftrightarrow 3$ divides (a - b), show that R isan equivalence relation ? [5M] **2.a)** Let A = $\{1,2,3,4\}$ and let R = $\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}$ be an equivalence relation on R ? determine A/R [5M]. **b**) Define compatability relation & maximal compatability **3** .Let A be a given finite set and P(A) its power set . let \subseteq be the inclusion relation on the elements of P(A). Draw the Hass diagram of (P(A), \subseteq) for i) A = { a } ii) A = { a, b} iii)) $A = \{a,b,c\}$ iv)) $A = \{a,b,c,d\}$ [10M] 4. a) Define Bijective function with an 2 examples. [5M] **b**) Define primitive recursive function ?show that the function f(x, y) = x + y is primitive recursive. [5M] **5 a**).Let $f: A \to B, g: B \to C, h: C \to D$ then prove that ho(gof) = (hog)of[5M]**(b)**If $f: R \to R$ such that f(x) = 2x+1, and $g: R \to R$ such that g(x) = x/3 then verify that $(gof)^{-1} = f^{-1}og^{-1}$ [5M]6.a)Define a binary relation. Give an example.Let R be the relation from the set $A = \{1, 3, 4\}$ on itself and defined by $R = \{ (1, 1), (1, 3), (3, 3), (4, 4) \}$ the find the matrix of R , draw the graph of R. [5M]

b) Define and give an examples for group, semigroup, subgroup &abelian group [5M]

7.a) Prove that the set Z of all integers with the binary operation *, defined as a * b = a + b + 1, $\forall a, b \in Z$ is an abelian group. [5M]

b)Explain the concepts of homomorphism and isomorphism of groups with examples[5M]
8. a)Let s={a,b,c} and let *denotes a binary operation on 's' is given below also let p={1,2,3} and addition be a binary operation on 'p' is given below.show that (s,*) & (p,(+)) are isomorphic. [5M]

*	А	В	С
А	А	В	С
В	В	В	С
С	С	В	С

(+)	1	2	3
1	1	2	1
2	1	2	2
3	1	2	3

b)On the set Q of all rational number operation * is defined by a*b=a+b-ab.
Show that this operation Q froms a commutative monoid. [5M]
9. a)The necessary and sufficient condition for a non – empty subset H of a group (G, *) to be a subgroup is a ∈ H, b ∈ H ⇒ a * b⁻¹ [5M]
b)Show that the set={1,2,3,4,5} is not a group under addition & multiplication modulo 6
10.a)Show that every homomorphic image of an abelian group is abelian. [5M]
b)The necessary and sufficient condition for a non-empty sub-set H of a Group (G,*) to be a sub group is a∈H,b∈H=>a*b⁻¹€h [5M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II-B.Tech& I-Sem

Regulation:R16

UNIT III

ELEMENTARY COMBINATORICS

1.(a) Enumerate the number of non negative integral solutions to the inequity

 $x_1 + x_2 + x_3 + x_4 + x_5 \le 19.$

b) How many integral solutions are there to $x_1 + x_2 + x_3 + x_4 + x_5 = 20$ where each

(i) $x_i \ge 2$? (ii) $x_i > 2$?

2 a) How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and 9 if no repetitions areallowed? [5M]

(b) What is the co-efficient of (i) $x^3 y^7$ in $(x + y)^{10}$? (ii) x^2y^4 in $(x - 2y)^6$ [5M]**3. a)** Out of 5 men and 2 women, a committee of 3 is to be formed. In how many waysCanitbe formed if atleast one woman is to be included?[5M]**b**) Find the number of arrangements of the letters in the word ACCOUNTANT.[5M]**4 a**).The question paper of mathematics contains two questions divided into twoGroups of5questions each. In howmany ways can an examine answer six questionsTakingatleast twoquestions from each group[5M]**b**) How many permutations can be formed out of the letters of word "SUNDAY"? How many of these (i) Begin with S? (ii) end with Y? (iii) begin with S & end with Y? (iv) S &Y always

together ? [5M] 5
(a)Inhowmany ways can the letters of the word COMPUTER be arranged? Howmany of them begin with C and end with R? howmany of them do not begin with C but end with R?
b)Outof 9 girls and 15 boys howmany different committees can be formed each

consisting of 6 boys and 4 girls? [5M]

6.(a) Define product rule? State Binomial theorem?Define permutation? [5M]

b) Find the coefficient of (i) $x^3y^2z^2$ in $(2x - y + z)^9$. (ii) x^6y^3 in $(x - 3y)^9$.

7.(a)Prove that Inclusion – Exclusion principle for two sets A & B.

b)Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5. Also determine the number of integers divisible by 5 not by 2, not by 3.

[5M]

[5M]

8 a) out of 80 students in a class, 60 play foot ball, 53 play hockey, and 35 both the games.how many students (i) do not play of these games. (ii) play only hockey but not foot ball

b)A survey among 100 students shows that of the three ice cream flavours vanilla, chocolate, straw berry . 50 students like vanilla, 43 like chocolate, 28 like straw berry, 13 like vanilla and chocolate, 11 like chocolate and straw berry, 12 like straw berry and vanilla and 5 like all of them. Find the following.

1. Chocolate but not straw berry

2. Chocolate and straw berry but not vannila

3. Vanilla or Chocolate but not straw berry

9.a)How many different license plates are there that involve 1,2or 3 letters followed by 4 digits ?

b) Find the minimum number of students in a class to be sure that 4 out of them are born on the same month.?

- **10.a)** Applying pigeon hole principle show that of any 14 integers are selected from the set $S = \{1, 2, 3, \dots, 25\}$ there are atleast two whose seem is 26. Also write a statement that generalizes this result.
 - **b**) show that if 8 people are in a room , at least two of them have birthdays that occur on the same day of the week.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II-B.Tech& I-Sem

Regulation: R16

UNIT IV

RECURRRENCE RELATION

1.a) Find the generating function for the sequence 1,1,1,3,1,1,....

b) Find the coefficient of
$$x^{20}$$
 in $(x^2 + x^3 + x^4 + x^5 + x^6)^5$? [5M]

2.a) Determine the sequence generated by

(i)
$$f(x) = 2e^{x} + 3x^{2}$$
 (ii) $7 e^{8x} - 4 e^{3x}$. [5M]

b) Find the sequence generated by the following generating functions

(i)
$$(2x-3)^3$$
 (ii) $\frac{x^4}{1-x}$ [5M]

3. a)Solve $a_n = a_{n-1} + 2a_{n-2}$, $n > 2$ with condition the initial $a_0 = 0$, $a_1 = 1$.	[5M]
b)Solve a_{n+2} - 5 a_{n+1} + 6 a_n = 2, with condition the initial a_0 = 1, a_1 = -1.	[5 M]
4.a)Solve the RR a_{n+2} - $2a_{n+1}$ + $a_n = 2^n$ with initial condition $a_0=2$ & $a_1=1$.	[5M]
b) Using generating function solve $a_n = 3 a_{n-1} + 2$, $a_0 = 1$.	[5M]
5. a) Solve the following $y_{n+2} - y_{n+1} - 2 y_n = n^2$.	[5M]
b)Solve $a_n - 5 a_{n-1} + 6 a_{n-2} = 1$.	[5M]
6 a) Solve the recurrence relation $a_r = a_{r-1} + a_{r-2}$ Using generating function.	[5M]
b)Solve the recurrence relation using generating functions $a_{-}9a_{-}+20a_{-}$	-0 for $n > 2$

b)Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$ for $n \ge 2$

and
$$a_0 = -3, a_1 = -10$$
 [5M]

7)a) Solve the recurrence relation
$$a_n = a_{n-1} + \frac{n(n+1)}{2}$$
 [5M]

b)solve $a_k = k(a_{k-1})^2$, $k \ge 1$, $a_0 = 1$

8.Solve the recurrence relations

- **a**) $d_n=2d_{n-1}-d_{n-2}$ with initial conditions $d_1=1.5$ and $d_2=3$. [5M]
 - $\mathbf{b}_{n}=3b_{n-1}-b_{n-2}$ with initial conditions $b_{1}=-2$ and $b_{2}=4$. [5M]
- **9** a)Solve $a_n 7 a_{n-1} + 10 a_{n-2} = 4^n$. [5M]
 - **b**) Solve $a_n = a_{n-1} + 2a_{n-2}$, n > 2 with condition the initial $a_0 = 2$, $a_1 = 1$ [5M]

MFCS

10. a) Solve $a_n - 5 a_{n-1} + 6 a_{n-2} = 2^n$, $n > 2$ with condition the initial $a_0 = 1$, $a_1 = 1$. Us	sing
generating function .	[5M]

b) Solve $a_n - 4 a_{n-1} + 4a_{n-2} = (n+1)^2$ given $a_0 = 0$, $a_1 = 1$.

[5M]

Туре

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

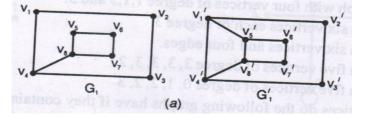
Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II-B.Tech& I-Sem

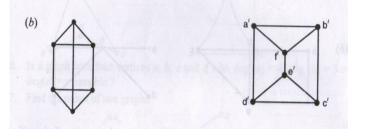
Regulation:R16

UNIT –V

UNIT-V		
GRAPH THEORY		
1.a) Determine the number of edges in (i) Complete graph K_n		
(ii) Complete bipartite graph $K_{m,n}$ (iii) Cycle graph C_n		
(iv) Path graph $P_n(v)$ Null graph N_n [5M]	
b)Show that the maximum number of edges in a simple graph with n vertices is n (n-1)/2 [5M	1]
2.a)Define isomorphism. Explain Isomorphism of graphs with a suitable example.	[5]	M]
b) Explain graphcoloring and chromatic number give an example.	[5M]	
3. a)Explain about complete graph and planar graph with an example	[5]	M]
b) Define the following graph with one suitable examples for each graphs		
(i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph	[5]	M]
4.a)Explain In degree and out degree of graph. Also explain about the adjacency matr	ix	
representation of graphs. Illustrate with an example? [5M]		
b)Give an example of a graph that has neither an Eulerian circuit nor a Hamiltonian cir	cuit [5M]	
5.a) Define Spanning tree and explain the algorithm for Depth First Search (DFS) trave	ersal of	
a graph with suitable example	[5M]	
b) A graph G has 21 edges, 3 vertices of degree4 and the other vertices are of degree 3.		
Find the number of vertices in G?	[5M]	
6 . (a) Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does	the	
graph have ?	[5	M]
\mathbf{b}) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa .	[5M]	
7.a)Let G be a 4 – Regular connected planar graph having 16 edges. Find the number	of	
regions of G.	[5M]	
b)Draw the graph represented by given Adjacency matrix	[5M]	


[5M]

[5M]


	[1	2	0	1]		0	1	0	1
(i)	2	0	3	0	(ii)	1	0	1	0
	0	3	1	1		0	1	0	1
	1	0	1	0		1	0	1	0

8.a) Show that in any graph the number of odd degree vertices is even.

b) Is the following pairs of graphs are isomorphic or not ?

9. a) Show that the two graphs shown below are isomorphic ?

b) Ex	plain about the Rooted tree with an example ?	[5M]
10. (a)(i)Find the chromatic polynomial & chromatic number for K $_{3,3}$	[5M]
(ii) Define Euler circuit, Hamilton cycle ,Wheel graph ? [5M]		
(b)	Define Spanning tree and explain the algorithm for Breadth First Search (BF	S) traversal of

a graph with suitable example

[5M]

[5M]

SIDDHARTHGROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :MFCS(16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II- B.Tech& I-SemRegulation:R16

UNIT I

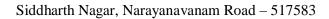
MATHEMATICAL LOGIC

1. In the statement $P \rightarrow$	Q , the statement I	P is called			[]
A) Consequent	B) Antecedent	C) Both A	&B	D)Sequent		
2. What is the negation o	f the statement "I	went to my	class yeste	erday	"[]
A) I did not go to m	ny class yesterdayB)	I was absen	it from my c	lass yesterday		
C) It is not the case t	hat I went to my cla	ass yesterday	y D) All the a	above		
3. Which of the following	g statement is well	l formed for	rmula		[]
A) $P \to Q \to \land Q$ B)	$(P \land Q) \rightarrow RC)$	$((Q \land (P \rightarrow$	$Q)) \rightarrow R)$	D) None		
4. $((P \to Q) \lor \neg (P \to Q))$	$)) \land (P \to (P \to Q)$	$()) \Leftrightarrow$			[]
A) T E	B) F	C) Cor	ntingency	D) Non		
5. $P \uparrow Q \Leftrightarrow$					[]
A) $P \wedge Q$	B) $\neg (P \lor Q)$ C) $\neg ($	$P \wedge Q$)	D)	$P \lor Q$		
6. The Rule CP is also ca	lled				[]
A) Contradiction of p	roof B) Conditio	nal proof	C) Consiste	ncy of premises D) r	none	
7. If $H_1, H_2,, H_m$	re the premises ar	nd their con	junction is	identically false the	n	
The formulas $H_1, H_2, -$	$, H_m$ are called	d			[]
A) Consistent B)	Tautology C) I	Inconsistent	D) No	one		
8. The α and β are string	g of formulas. If <i>c</i>	$\alpha_{and} \beta_{ha}$	ve at least	one variable in		
Common then the seque	nt $\alpha \xrightarrow{s} \beta$ is				[]
A)String of formula	B)String C) S	Sequent	D) Axiom			
9. Symbolize the statem	ent "Every apple i	s red"			[]
A) $(\exists x)(A(x) \land R(x))$)) B) $(\forall x)(A(x))$	$\wedge R(x)$)				
$C) \ (\exists x)(A(x) \to R(x))$	(x)) D) $(\forall x)(A(x))$	$\to R(x))$				

10. $\neg(\forall x)A(x)$				[]
A) $(\forall x)A(x)$	B) $\neg(\exists x)A(x)$	C) $(\exists x) \neg A(x)$	D) None		
11. A statement is a	declarative sentend	ce that is		[]]
A) true	B) false	C) true & false	D) none		
12. A Formula of dia	sjunctions of minte	erms only is known a	as	[]]
A) DNF	B) CNF	C)PDNF	D)PCNF		
13. pv7p=				[]	l
A) P	B)T	C)F	D)7P		
14. Let p: He is old	q:He is clever, writ	te the statement "He	is old but not clever	" in symbolic	c form
				[]
A)p^q	B)p^7q	C)7p^7q	D)7(7p^7q)		
15. The proposition	p^p is equivalent to	0		[]	
A)1	В)р	С)7р	D)none		
16. The connectives	^ and v are also ca	alled to e	each other	[]
A)NAND	B) NOR	C) XOR	D) du	al	
17. The symbolic fo	rm of "All men are	mortal" where M(x)):x is a men H(x):x i	is mortal	
				[]	
$A)M(x) \rightarrow H(x)$	B)(x)[M	$I(x) \rightarrow H(x)$ C)(3	$x)(M(x) \rightarrow H(x)]$	D)none	
18. 7(p→q)=				[]]
A) 7pv7q	B) p^7q	C) p→q	D) p → 7q	1	
19. Statement:Navee	en sits between maa	dhuand mohan is a		[]	
A) 3-place pred	icate B)4-place	predicate C)2-plac	e predicate D)none		
20. We symbolize "	for all x" by the syn	mbol is		[]	
A) $(\forall x)$	B) $(\exists x)$	C)[x]	D) ∀		
21. In (x)[p(x) \rightarrow Q(x)	x)] the scope of the	quantifier is		[]	
A)p(x)	B)Q(x) \rightarrow p(x)	$C)p(x) \rightarrow Q(x)$	D)none		
22. (p → q)⇔				[]
A)pvq	B)pv7q	C)7pvq	D)none		
23. If p is true , q is	false then $p \rightarrow q$ is			[]	
A)true	B)false	C)true or flase	D)none		
24. p↓q<=>				[]
A)7(pvq)	B)7(p^q)	C)p^q	D)pvq		

	sting of a product of	•		l]
A)CNF	B)DNF	C)PDNF	D)PCNF		
26. 7(pvq) <=>				[]
A)7p^7q	B) 7pv7q	C) p^q	D) p\	•	
27. A proposition of	btained by inserting	the word not in	the appropriate	place is called []
A) conjunctio	on B)disjunct	ion C)	Negation	D)Implication	1
28. p,p→q⇒					[
A)p B) q	C)p→q	D) 7p		
29. p^(qvr) <=>				[]
A) (pvq) ^(q	vr) B) (pvq)	^(p ^ r) C) (p^q) v (p^r)	D) (p^q) v (q	^r)
0. The logical truth	n or a universal valid	statement is cal	led	[]
A)contingenc	y B)tautology	c)a	bsurdity	D)contradiction	
31. Implication I_{11} i	s			[]
A) p,p → q=>q	B) p,q=>p'	Yq C	7q,p→q=>p	D)none	
2. New proposition	ns are obtained by the	e given proposit	ion with the hel	pof []
A)conjunctior	B) connectives	C) comp	ound propositio	on D) none	
33. Equivalence E_{18}	is			[]
A) p,p → q=>q	B) p,q=>p^	rq C)	7q,p→q=>p	D)none	
34. R v(p^7p) <=>					[
A)p	B) 7p	C) R	D) 7R		
35. p^q =>					[
A)p	B) Q C)	both A and B	D) none		
36. In (x)[p(x) ^Q(x)] the scope of the qu	uantifier is			[
A)p(x)	B)Q(x) ^p(x)	C)p(x) ^Q(x)	D) Q	(x)	
37. Which of the fol	llowing is contrapos	itive law			[
A) $p \rightarrow q \equiv \sim q$	$q \rightarrow \sim p B$) $p \rightarrow q \equiv \sim$	$q \rightarrow p$ C) $p \wedge$	$p \equiv p$ D) no	one	
38. Every Rectangle	e is a Square			[]
A)T	B) F	C) both T &	F D) n		-
-	sting of a sum of ele			[]
A)CNF	B)DNF	C)PDNF	D)PCNF	-	-
40. p^7p=	,	,	,	[]

Question Bank 2018 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road - 517583 **QUESTION BANK (OBJECTIVE)** Subject with Code : MFCS (16CS507) Course & Branch: B.Tech - CSIT Year & sem : II B.Tech I SEM, **Regulation : R16 UNIT II RELATIONS, FUNCTIONS, ALGEBRAIC STRUCTURES** 1. Let $A = \{1, 2, 3, 4\}$. Let f, g and h be functions of A into R. Which one of them is one- one? ſ 1 (A) f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 3 (B) g(1) = 2, g(2) = 4, g(3) = 5, g(4) = 3(C) h(1) = 2, h(2) = 4, h(3) = 3, h(4) = 2 (D) None of above 2. Let A = [-1, 1]. Which of these functions are bijective on A? [] (A) $f(x) = x^2$ (B) $g(x) = x^3$ (C) $h(x) = x^4$ (D) None of above 3. Let $S = \{a, b, c, d\}$. Which of the following sets of ordered pairs is a function of S into S? [] (A) $\{(a, b), (c, a), (b, d), (d, c), (c, a)\}$ (B) $\{(a, c), (b, c), (d, a), (c, b), (b, d)\}$ (C) $\{(a, c), (b, d), (d, b)\}$ (D) $\{(d, b), (c, a), (b, e), a, c)\}$ 4. If $x_1=x_2 \Rightarrow f(x_1)=f(x_2)$ then the function f is said to be [] B)surjective C)bijective A)injective D)none 5. If every element of y has the pre-image in x under the function of f then f is [1 A)one-one B)on-to C)one-to-one D)none 6. If f^{-1} exits for 'f' then obviously f^{-1} is also ſ 1 A) one-one B) on-to C) one-one & on-to D)none 7. If $f(x)=x^2+1$ &g(x)=x-1 then fog(x)= 1 A) $x^{2}-2x+2$ B) $x^{2}-2x-2$ C) x^2-2x D)none 8. A mapping $I_x::x \rightarrow x$ is called an ſ 1 A)Reflexive B)identity C)inverse D)none 9. If $f:x \rightarrow y$ is invertable the $f^{-1}of =$] [A)f B) f⁻¹ $C)I_x$ D)none 10. The algebraic system (S, \circ) is called ____ is the operation o is associative[1 A) Group B) Monoid C) Semi group D) Abelian group MFCS Page14


then the iden	ntity element is				[l
A) 1	B) 0	C) -1	D)	None			
12.Let g be a l	homomorphism from (2	X,0) to (Y,*	*). If g:	$X \to Y$ is one	-to-on	e and	onto
hen g is called				[]		
A) Bijection B) Ison	morphism C) Epimorph	hism D) Monom				
13 . relation is reflex	xive then there must be a			-	[]	
A) Node	B) loop		c) vertex			d) e	dge
14.A relation which	satisfies reflexive, symm	etric, & tran	sitive is ca	illed as –		[]
A) Equivalence	B) compatibilityc) parti	on of set		d) covering	g		
15. If n(A)=20,n(B)=	=30 and $n(A \cap B)=5$ then n	(AUB)=			[]	
A) 40	B) 55 C)) 45 D)) 50				
16.If A={2,4,6,8,10	0,12} then the set builder t	form is				[]
A) { 2X/ 2	X is natural number < 7 }	B){ 2X/	X is natur	al number < 9	}		
C) { 2X/ X	K is natural number < 5 }	D){ 2X/ X	K is natural	number < 17			
17 If U={1,2,3,4,5,	67) find the set energified	1 .1 1		101001		r	- 1
	-		-	10100 18		l]
A) {1,2,3,4,5,	6,7} B) $\{1,3,,5,\}$ C) $\{1$	l,2,3,4,} D)	{1,2,3}			l]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f,	6,7} B){1,3,,5,} C){1 g,h} find the set specifie	l,2,3,4,} D) d with bit str	{1,2,3} ring of the	set $A = \{a,d,f\}$		-]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101	l,2,3,4,} D) d with bit str C) 101010	{1,2,3} ring of the 010	set A = { a,d,f D) 10001	010	[]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	l,2,3,4,} D) d with bit str C) 101010	$\{1,2,3\}$ ring of the 010 x,y,z \in X an	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010	[]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	l,2,3,4,} D) d with bit str C) 101010 if for every :	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010	[]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	l,2,3,4,} D) d with bit str C) 101010 if for every :	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010	[]
A) $\{1,2,3,4,5,$ 18. If U= $\{a,b,c,d,e,f,$ A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	$\{1,2,3,4,\}$ D) d with bit str C) 101010 if for every $x \in R$ then	{1,2,3} ring of the 010 x,y,z \in X an D) none $f \circ g$ is	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010	[[]]
A) $\{1,2,3,4,5,$ 18. If U= $\{a,b,c,d,e,f,$ A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	$\{1,2,3,4,\}$ D) d with bit str C) 101010 if for every $x \in R$ then C) $(x+2)$	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g_{is}$	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010 nxRz [[]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f: R \to R$ b	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	$,2,3,4, \} D)$ d with bit star C) 101010 if for every : $x \in R \text{ then } +$ C) (x+2) 2. Find f^{-1}	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g_{is}$	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010	[]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - x^3)$	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	$,2,3,4, \} D)$ d with bit star C) 101010 if for every : $x \in R \text{ then } +$ C) (x+2) 2. Find f^{-1}	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g_{is}$	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010 nxRz [[[]]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 22)$. The example for	6,7} B){1,3,,5,} C){1 g,h} find the set specifie B) 10010101 set 'X' is	1,2,3,4, } D) d with bit sta C) 101010 if for every : $x \in R$ then → C) $(x+2)^{2}$ 2. Find f^{-1} D) x^{3} –	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g_{is}$	set A = { a,d,f, D) 10001 d xRy∩yRzthe	010 nxRz [[]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $($	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	1,2,3,4, } D) d with bit str C) 101010 if for every : $x \in R$ then → C) $(x + 2)^{2}$ 2. Find f^{-1} D) x^{3} – the above	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g$ is $(1)^3$	set A = { a,d,f, D) 10001 d xRy \cap yRzthe D) $x-2$	010 nxRz [[[]]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $($	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	1,2,3,4, $\}$ D) d with bit str C) 101010 if for every $x \in R$ then $x \in R$ then $x \in R$ then $x \in C$) $(x + 2)$ 2. Find f^{-1} D) x^{3} – the above number of	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g$ is $(1)^3$	set A = { a,d,f, D) 10001 d xRy \cap yRzthe D) $x-2$	010 nxRz [[[]]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R_{b}$ A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 22)$. The example for A) {1} 23. If the set contain A) nB) n+1	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	1,2,3,4, $\}$ D) d with bit str C) 101010 if for every $x \in R$ then $x \in R$ then $x \in R$ then $x \in C$) $(x + 2)$ 2. Find f^{-1} D) x^{3} – the above number of	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g$ is $(1)^3$	set A = { a,d,f, D) 10001 d xRy \cap yRzthe D) $x-2$	010 nxRz [[[]] []
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \to R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ A) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	$,2,3,4, \} D)$ d with bit str C) 101010 if for every : $x \in R \text{ then } + C) (x+2)$ 2. Find f^{-1} D) x^{3} − the above number of	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g$ is $(1)^3$	set A = { a,d,f, D) 10001 d xRy \cap yRzthe D) $x-2$	010 nxRz [[[]]]
A) {1,2,3,4,5, 18. If U={a,b,c,d,e,f, A) 10010111 19. A Relation R in a A)AntisymmetricB) T 20.Given $f(x) = x^3$ A) $x + 2$ 21.Let $f : R \rightarrow R$ b A) $(x + 2)^{\frac{1}{3}}$ B) $(x - 2)^{\frac{1}{3}}$ B) $($	6,7} B){1,3,,5,} C){1 g,h} find the set specified B) 10010101 set 'X' is	1,2,3,4, D d with bit str C) 101010 if for every $x \in R$ then C) $(x + 2)^{2}$. Find f^{-1} D) x^{3} – the above number of B D)None	$\{1,2,3\}$ ring of the 010 x,y,z \in X an D) none $f \circ g$ is $(1)^3$	set A = { a,d,f, D) 10001 d xRy \cap yRzthe D) $x-2$	010 nxRz [[[]] []

25.If B = {x / x is a multiple of 4, x is odd}, the set B is []	
A) Null B) Power set C) Empty set D) Index set	
26.The family of subsets of any set is called as []	
A) Proper subset B) Subset C) Set of sets D) Power set	
27. The inverse of the identify element is the []	
A)inverse element B) Identity element C)idempotent element D) nilpotent element	
28. A group with addition binary operation is known as []	
A)Abelian group B)Groupoid C)subgroup D)additive group	
29. A group with multiplication binary operation is known as []	
A)Abelian group B) additive group C) multiplicative group D)none	
30. A group G is said to beif the commutative law holds []	
A)groupoid B)semigroup C)Abelian D)none	
31. In order word (s,0) is a semigroup if for any x,y,zes then xo(yoz)= []	
A)(xoy)*z B)(xoz)oy C)(xoy)oz D)x*(y*z)	
32. semigrouphomorphism satisfies []	
A)on-to B)one-one C)one-one&on-to D)none	
33. Every homomorphic image of an abelian group is []	
A)sub group B)semigroup C)abeliangroup D)none	
34. If H is any subgroup of a group G then HH= []	
A)H ⁻¹ B)e C)1 D)H	
35. A non-empty subset H of a group (G,*) a subgroup iff_where $a \in H, b \in H$ []	
A)abeH B)a*beH C)a*b ⁻¹ e D)a ^{-1*} beH	
36. An algebric structure (s,*) which has an identity element and also satisfies closure, associ	ative
law is called a []	
A)subgrokup B)groupoid C)monoid D)none	
37. The identity element (if it exists) of any algebraic structure is []	
A)multiple B)unique C)one D)zero	
38. If a*e=a then e is calledelement for the operation * []	
A)left identity B)Right identity C)identity D)none	
39.If e*a=a then e is calledelement for the operation * []	
A)left identity B)Right identity C)identity D)none	
40. The non zero set of intergers under multiplication is []	
A)monoid B)semigroup C)Group D)none	
41 the order of the identity element of a group G is[]	

MFCS

A)1	B)2	C)0	D)3		
42. The inverse of 4 in the n	nultiplicative	group of	fintegers	s modulo 7 is []
A)3	B) 2	C) 4	D) 5		
43. The order of 4 in the gro	oup of additio	n modul	lo 12 is	[]	
A)3	B)5	C)7	D)10		
44. The group of all on	e- one & on	ito map	pings fr	om S to S there	the order of S is n,
and	is called a	grou	ıp.		[]
A) anabelian B) s	symmetric C)	alterna	ting D)	commutative	
45. If G is a group, H is a	sub group of (G and a,	b∈ G, tł	the relation $a \equiv$	b (mod H) is []
A) Reflexive B) Syn	nmetric C) re	flexive	& symm	etric D) an equiva	alence relation
46.The order of alternating	group, if the	set S ha	as n elem	ients is []	
A) n	B) n!	C) n/	/2	D) n! /2	
47.The order of group	of all one- or	ne & on	to mapp	ings from S to S th	here the order of S is n,
and is.			[]	
A) n	B) n!	C) n/	/2	D) n! /2	
48.If G is a group and a,	$b \in G$,then (ab	$)^{-1} =$			[]
A) $a^{-1}b^{-1}$	B) ab^{-1}	C) a	⁻¹ b	$D)b^{-1}a^{-1}$	
49The solution of $ax=1$	b in a group C	, where	ea,b∈ G	is	[]
A) ab^{-1}	B) $a^{-1}b^{-1}$	C) a	⁻¹ b	D) a ⁻¹	
50. If e_1 and e_2 are two identified the set of t	lentity elemen	ts of a g	group G	, then	[]
A) $e_1 < e_2$	B) $e_1 = e_2$	C) e ₁	$_{1} > e_{2}$	D) e ₁ e ₂	
51.If G is a finite group o	f order n , and	l a ∈ Gt	hen		[]
A) $e^n = a$	B)a ⁿ =a	c) a ⁿ	= e	D) $a^n \neq e$	
52.If the order of an elem	enta \in G is n	and the	order of	a ⁻¹ is m ,then	[]
A) m< n	B) m > n	C) m	n = n	D) $m = an$	
53. The order of 4 in the	additive group	o of inte	gers mo	od 6 is	[]
A)2	B)3	C)5	D)4		
54. The inverse of 8 in the	e multiplicativ	e group	of integ	ers mod 11 is	[]
A)7	B)9	C)5	D)6		
55If G is a group and a,					[]
A) $a^2b = a^2b^2$	B) $(a.b)^2 =$	$a^2.b^2$	C) a.ł	$b = a^2 \cdot b^2 D$ $a.b \neq a$	a^2b^2

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

OUESTION BANK (OBJECTIVE)

Subject with Code : MFCS(16CS507)Course & Branch: B.Tech - CSIT

Year &Sem: II- B.Tech& I-SemRegulation:R16

UNIT III

			ELEMENT	ARY COMBI	NATORIC	<u>CS</u>		
1.	Enumerating	g r-permutatio	ons without r	epetitions P(n,1)=	[]		
	A) $\frac{n!}{r!(n-r)}$	$\frac{1}{!} \mathbf{B}) \frac{n!}{r!}$	C) $\frac{n!}{(n-r)!}$	D) None				
2.	How many a	3 digit numbe	r can be form	ned using the d	igits 1,3,4,5	5,6,8 and 9	[]	
	A) 7*6*5	B) 3!	C) $\frac{7!}{3!}$	D) 7 ³				
3.	How many :	5-card hands l	have 2clubs	and 3hearts.		[]		
	A) C(13,2)	C(12,3) B) C	C(13,2) C(13	3) C) C(52,5)	D) None			
4.	If a student	is to answer	true or false	questions and	there are f	ive question	is, the numbe	er of
	ways, he can	n answer is []					
	A) 10	B) 16	C) 32	D) 5	i			
5.	The number	of two-digit	words, if rep	etitions are allo	wed is		[]	
	A) 576	B) 676	C) 52	D) 6	50			
6.	The four-di	git numbers,	that can be f	formed from th	e digits 1,2	2,3,4,5,6,7 if	there will be	e no
	repetitions a	are				[]	
	A) 24	B) 6	C)840	D)	120			
7.	The three-d	ligit numbers	, that can b	e formed from	n the digits	s 1,2,3,4,5 i	if repetitions	are
	allowed is					[]	
		1. 125	B) 120	C) 60	I	D) 36		
8.	The number	of ways sittin	ng five peopl	e around a tabl	e is		[]	
MFCS							Dao	e18
1011 0.5							гау	juro

A) 24	B) 120	C) 312	D)720	
-		·	replacement from a dec	ck of 52 cards is
	[]	6	r	
A)2704	B) 1326	C) 52	D) 2652	
		,	out replacement from a	deck of 52 cards is []
A)2704	B) 1326	C) 52	D) 2652	
		,	·	ys of selecting 5 red balls
and 3 blue l				[]
A) 42126	B)44352	C) 12	118 D) 24352	
12. The number	r of positive integ	er solutions of z	x+y+z=6 is[]	
A) 24	B) 20	C) 10	-	
13. The number	r of two digit ever	number is		[]
A) 45 B) 24	4 C)81 D)50			
14. The three-c	ligit numbers, th	at can be form	ned from digits 1,2,3,4	,5, if repetitions are not
allowed is			[]	
A) 125 B)	60 C) 45 D) 90			
15. The number	r of non-negative	integer solution	s of $x+y+z=6$ is []	
A) 24 B) 20	0 C) 60 D)28			
16. The number	r of non-negative	integer solution	s of $x+y+z=9$ is []	
A) 55 B) 4:	5 C) 60 D)72			
17. The number	r of positive integ	er solutions of a	x+y+z<7 is	[]
A) 20 B) 60	0 C) 120 D) 90			
18. The number	r of permutations	of the word SU	CCESS is	[]
A) 960	B) 420	C) 1	20 D) 840	
19. The number	r of permutations	of the word HA	PPY is	[]
A) 90 B) 12	20 C) 60 D) 40			
20. The number	r of permutations	of the word LA	PTOP is	[]
A) 240	B) 120	C) 3	60 D) 40030	
21. The number	er of combination	s of five obje	cts among eight objec	ts, if the repetitions are
allowed and	l order is not impo	ortant is		[]
A) 645	B) 792	C) (896 D) 962	
22. The number	r of combinations	of three objects	among six objects, if th	he repetitions are allowed
and order is	not important is			[]

~	A) 56	B)96		C) 48	D) 120	1		
23		•		-	ons each. If a stu		answ	er 2 fr
	one group a	nd 3 from anoth	her group, the	number of	ways that he can	n answer is		
]								
	A) 48	B)24		2)72	D) 30			
24	4. The coeffici	ent of x^5y^2 in the	ne expansion o	of $(x+2y)^7$	is		[]
	A) 42 B) 84	C) 120 D) 96						
25	5. The coeffici	ent of x ⁵ y in the	e expansion of	$(2x+y)^{6}$	is		[]
	A) 192 B) 1	28 C) 120 D) 1	44					
20	6. AUB =62,	A =32, B =42,	then $ A \cap B =$				[]
	A) 2	24 B) 1:	5 C) 3	36	D) 12			
27	7. The number	of integers<50	0 and divisible	e by 3 or 6	5 or 7 is		[]
	A) 214	B) 24	48 C) 3	324	D) 194			
28	8. The number	of integers<25	0 and divisible	e by 7 or 1	1 is		[]
	A) 54	B) 4	-8 C) 7	74	D) 9			
29	9. The number	of non negativ	e integer solut	ions of x ₁	$+ x_2 + x_3 + x_4 = 8$	8 have	[-
	A) 165	B)16	54 C) 1	66	D)163			
30	0. The coeffici	ent of x ⁴ y ⁷ in th	ne expansion of	of $(x - y)$	¹¹ is		[-
	A)-330	B) 3.	30 C) -	- 332	D) 332			
3	1. The number	of non negativ	e integer solut	ions of x ₁	$+ x_2 + x_3 = 11 h$	ave	-	-
	A)65	B)74	C) 75	D)78				
32	2. The coeffici	ent of x^2y^2 in t	he expansion	of $(2x + 3)$	³ y) ¹⁰ is	[]	
	A)1620		52 C) 1					
33		B)=30 and $n(A \cap$	B)=5 then n(A)	UB)=			[]
	B) 40	B) 55	C) 45	D)				
34	4.By solving C	(n, 2) = 28, n =	=				[1
	A) 9	B) 8	C) 7	,	D) 10			
3	5. The number	of circular permu	tations of n ob	jects taken	all n at a time is		[
	A) n – 1	B) (n − 1)!	C) n	l	D) n!			
3	6.If anti clock v	vise & clock wise	e order of arran	gements are	e not distinct then t	the number		
	of circular pe	ermutations of a c	listinct items is				[]
	A) N – 1	B) (n − 1)!		$\frac{1}{2}(n-1)!$	-			
7. T	The coefficient	of $x^2y^3z^2$ in the	expansion of	(x+y+z)	z) ⁷ is []		
	A)120	B)200	C) 820	D)210)			

38. The number of ways of dividing a set of size 5 into 3 mutually disjoint						
bsets of sizes 2	2, 1, and 2 is		[]		
B) 30	C)40	D)35				
C (n, 2) then n	=		[]		
B) 1	C) 3	D) 4				
40. The coefficient of $x^2y^2z^2$ in the expansion of $(x + y + z)^6$ is						
B)100	C) 80	D)10				
	bsets of sizes 2 B) 30 C (n, 2) then n B) 1 ent of $x^2y^2z^2$ in t	bsets of sizes 2, 1, and 2 is B) 30 C)40 C (n, 2) then n = B) 1 C) 3 ent of $x^2y^2z^2$ in the expansion of	bsets of sizes 2, 1, and 2 is B) 30 C)40 D)35 C (n, 2) then n = B) 1 C) 3 D) 4 ent of $x^2y^2z^2$ in the expansion of $(x + y + z)^6$ is	bsets of sizes 2, 1, and 2 is [B) 30 C)40 D)35 C (n, 2) then n = [B) 1 C) 3 D) 4 ent of $x^2y^2z^2$ in the expansion of $(x + y + z)^6$ is [

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :MFCS(16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II- B.Tech& I-Sem Regulation:R16

UNIT V

<u>GRAPH THEORY</u>

1. A regular graph of d	egree has n	o lines.			[]	
A) 0	B) 1	C) 2	D) 3				
2. The maximum degr	ee of any vertex in	a simple grap	h with n ve	rtices is		[]
A) n	B) n+1	C) n-1	D) n+2				
3. A graph G has 21 e	dges, 3 vertices of	degree 4 and	other vertic	es of degree 3. Fi	nd		
the number of vertice	es in G.					[]
A) 10	B) 11	C) 12	D)	13			
4. The maximum num	per of edges in a si	mple graph w	ith n vertice	s is		[]
A) n(n-1)/2	B) (n-1)/2	C) n(n+1)/2	D) n(n1)			
5. A graph which allow	vs more than one e	edge to join a p	air of vertion	ces is called		[]
A) Simple graph	B) Multi-grap	h C) Null	graph D) Weighted graph			
6. A graph G with no s	elf loops is called	a				[]
MFCS							Page

A) Simple grap	h B) Multi-gra	aph C) Null graph	D) Weighted graph		
7. A graph having l	oops but no multip	ple edges called a		[]
A) Simple grap	h B) Multi-gra	aph C) Pseudo grap	bh D) Weighted graph		
8. A simple graph G	, in which every p	air of distinct vertices	are adjacent is called	[]
A) Simple grap	h B) Multi-grap	oh C) Null graph	D)Complete graph		
9. A binary tree T ha	as n leaves. The m	umber of nodes of degr	ree 2 in T is	[]
A) n-1	B) n	C) n+1	D) 2n		
10.The total number	of edges of a com	plete graph K _n is		[]
a) n	b) n ²	c) $\frac{n(n+1)}{2}$	d) $\frac{n(n-1)}{2}$		
11. A graph without	edges is called a.	graph		[]
A) trivial grap	h B) null graph	C)infinite graph	D) simple graph		
12. A graph is regula	r , if the degree of	each vertex is		[]
A) same	B) not same	C) always zero	D) always one		
13. Which is used to	o find the connecte	d component of graph	?	[]
A) BFS	B) DFS	C) Simple Graph	D)Tree		
14. A regular graph	of degree l	has no lines.		[]
A) 0	B) 1	C) 2	D) 3		
15. BFS stands for				[]
A) Best First	Search B) Bid Fi	rst Search C) Breadth	First Search D) B	i First	Searcl
16. A graph G has 2	1 edges, 3 vertices	s of degree 4 and other	vertices of degree 3. Fin	nd	
the number of	vertices in G.			[]
A) 10	B) 11	C) 12	D) 13		
17. The maximum de	egree of any vertex	x in a simple graph wit	h n vertices is	[]
A) n	B) n+1	C) n-1	D) n+2		
18. Eular's rule is				[]
A) v+e+r=2	B) v-e+r=2	C) ve-r=2	D) v+er=2		
19.A planar graph ha	as only infinite	e region(s).		[]
A) one	B) two	C) Three	D) four		
20. If a connected p	lanar graph G has	e edges, v vertices and	r regions, then	[]
A) v+e+r=2	B) v-e+	r=2 C) ver=2	D) v+er=2		
21.A connected grap	h that contains an	Euler Circuit is called		[]
A) Euler trail	D Q ·		graph D) Hamilton gra	1	

22. A complete bipartite graph $K_{m, n}$ is planar if and only if [] A) m>3 or n>3 B) m<3 or n>3 C) m<=3 or n<=3 D) m>=3 or n>3 b 23.A graph G=(V,E) is called a ____ graph if its vertices V can be partitioned into twosubsets V₁ and V₂such that each edge of G connects a vertex of V1 to a vertex of V2].] A) simple B) bipartite C) complete bipartite D) multi graph 24. The chromatic number of completebipartite graph is ſ 1 **B**) 2 D) 0 A) 1 C) 3 25. A complete graph with n vertices will have _____ edges [] A) (n-1)(n-2)/2B) n(n-1)/2C) (n-2)/2D) n(n-2)/226. A graph which allows more than one edge to join a pair of vertices is called a ſ 1 A) simple graph B) null graph C) multi graph D) Pseudo graph. 27. If G is a connected graph with n vertices and m edges, a spanning tree of g must have____ edg 1 es ſ A) n B) n+1 C) n+3 D) n-1 28.A given connected graph is a Eular graph if and only if all vertices of G are of ſ 1 A) same degree B) even degree C) odd degree D) Different degree 29.An _____ through a graph is a path whose edge list contains each edge of the graph exactly onc 1 ſ e. A) Eular path B) Eular circuit C) Eular graph D) Eular region 30. An _____ is a graph that possesses a Eular circuit. [] A) Eular path B) Eular circuit C) Eular graph D) Eular region 31. A circuit in a connected graph which includes every vertex of the graph is known as 1 B) Universal D) Clique A) Eular C) Hamiltonian 32.If G is agraph within vertices, then a Hamiltonian cycle in G will contain exactly _____ edges] [A) n-1 B) n C) n+1 D) n+2 33. The length of a Hamiltonian path in a connected graph of n vertices is] ſ D) n+2 A) n-1 B) n C) n+1 34. A circuit in a connected graph which includes every vertex of the graph is known as [1 A) Eular C) Hamiltonian D) Clique B) Universal 35. The number of colors required to properly color the vertices of every planar graph is [1

A) 2	B) 3 C)	4 D) 5	5	
36. The vertices of	a planar graph with les	ss than 30 edges is _	colorable	.[]
A) 1	B) 2	C) 3	D) 4	
37. A simple conne	cted planar graph with	17 edges and 10 ve	rtices cannot be	colorable.[]
A) 1	B) 2	C) 3	D) 4	
38. The chromatic	number of an isolated	vertex is		[]
A) one	B) two	C) three	D) four	
39. The Chromatic	number of a graph ha	ving atleast one edg	e is atleast	[]
A) one	B) two	C) three	D) four	
40. Every gra	aph is 5colorable			[]
A) simple	B) bipartite	C) planar	D) Euler	

Туре

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :MFCS (16CS507) Course & Branch: B.Tech - CSIT

Year &Sem: II- B.Tech& I-SemRegulation:R16

UNIT IV

RECURRENCE RELATIONS

1)The series 1+	-X + X ² +	- =			[]
a) ∑x ^г	b)∑(-1)x ^r	c)∑(-a) ^r x ^r	d)none			
2)The co-efficie	ent of $(x^3 + x^4 + x^5)$	+) ⁵ is=			[]
a)126	b)127	c)125	d)none			
3) The solution	of linear recurr	ence relation is -	methods		[]
a)4	b)3	c)2	d)none			
4) Iteration met	thod is also call	ed asmetho	d		[]
a) not substitu	tion	b)characterist	ic root	c)step by step	d)none	
5)Which metho	od ,the solution	is obtained as th	e sum of two pa	rts	[]
a)substitution	b)cha	racteristic root	c)step by step	d)none		
6) When fn= 0,t	thentheequatio	n is			[]
a)hom	a)homogeneous b)non-homogeneous c)none					
7) If the charact	[]				
a)a _n =b-	$_{1}2^{n} + b_{2}(-1)^{n}$	b)a _{n=} (b ₁ +2b ₂)(-	1) ⁿ	c)(2b ₁ +(-1)b ₂)r ⁿ	d)none	

8)The solution of linear non-homogeneous equation is=]
a) $a_n = a_n^{(h)} + a_n^{(p)}$ b) $a_n = A_0 + A_1 n + A_2 n^2$ c)Ab ⁿ d)none							
9)is called a particular solution]
a)an ^(h)	b)an ^(p)	$C)a_n = a_n^{(h)} + a_n^{(p)}$	d)none				
10) $a_n=2a_{n-1}$ is a homogeneous linear recurrence relation of order						[]
a)2	b)3	c)1	d)nor	ne			
11) If $f(n)=2^n$ and 2 is the root of the characteristic equation, then the trial solution is						[]
a)A2 ⁿ n ²	b)A2 ² n ²	c)A ² 2 ² n ²		d)none			
12) The associated linear homogeneous recurrence relation solution is=						[]-
a)an ^(h)	b)an ^(p)	C) a _N		D)none			
13) ∑a _n x ⁿ is e	qual to					[]
a) $a_0+a_1x+a_2x^2+\cdots$ b) $a_0x+a_1x^2+a_2x^3+\cdots$ C) a_0+a_1X D)none							
14) Arecurrence relation is a formula that relates for any integer						[]
a)n≥	1 b)n≤1	c)n=0	d)nor	ne			
15) If the solution is $a_n = (b_1+b_2n+b_3n^2)2^{n_1}$, then the value of "r" is						[]
a)2	b)3	c)1	d)nor	ne			
16)If f(n) is constant then the trial solution is						[]
a)Ab ⁿ	b)A	c)Ab ⁿ s ⁿ d)none				
17) Solving re	17) Solving recurrence relation fortypes]
a)2	b)3	c)1	d)nor	ne			
18) If $a_k=2a_{k-1}+k$, for all $k\ge 2, a_1=1$, then the value of $a_3=$						[]
a)12	b)11	c)4	d)nor	ne			
19) If a _{n+2} -4a _r	19) If a_{n+2} -4 a_{n+1} +4 a_n =2 ⁿ , then the equation is]
a)homogeneous		b)non-homogene	eous c)cha	racteristic	d)none		
20) Trail solution of $a_n^{(p)}$ is $A_0 + A_1 n + A_2 n^2 + \dots + A_m n^m$, then the degree is						[]
a)2	b)m	c)n c	d)none				

21. The generating function of 1 is							[]		
	A) $\frac{1}{1-x}$ B) $\frac{1}{1+x}$	$\frac{1}{1-2x}$ C) $\frac{1}{1-2x}$	D) $\frac{x}{1-2}$	x						
22.Th	e generating f	function of 3 ⁿ is	6				[]		
	A) $\frac{x}{1-3x}$	B) $\frac{x}{1+3x}$	$C)\frac{1}{1+x}$		$D)\frac{x}{1-x}$					
23. The generating function of n is							[]		
	A) $\frac{1}{1+x}$	B) $\frac{1}{1-x}$	$C)\frac{x}{(1-x)^2}$		$D)\frac{1}{(1-x)^2}$					
24. The generating function of 1+n is							[]		
	A) $\frac{1}{1-x}$	B) $\frac{1}{1+x}$	$C)\frac{x}{(1-x)^2}$		$D)\frac{1}{(1-x)^2}$					
25. T	The generating	function of the	sequence 1, -2	2,4,-8	,16is			[]
	A) $\frac{x}{1+2x}$	B) $\frac{1}{1+2x}$	C) $\frac{x}{(1-x)^2}$		D) $\frac{x^2}{(1+2x)^2}$					
26. The exponential generating function of the sequence 1,1,1,1,1is							[]	
1	A) e^x	B) e ^{-x}	C) e^{2x}	D) e^{-2x}						
27. The exponential generating function of the sequence 1,0,-1,0, 1,0, -1,0, 1, is										
	A) Cos x	B) sin:	x C) cos	2x	D) e^{2x} .					
28. 1	$1 + x + x^2 + x^3 + \dots$	=						[]	
	A) $\frac{1}{1+x}$	B) $\frac{1}{1+x^2}$	C) $\frac{1}{(1-x)^2}$	D)(1	$\frac{1}{(-x)}$					
29. the order of RR a_{n+1} -2 a_n = 2 is							[]	
A	A) 2	B) 1	C) 3	D) 4						
30. The order of $a_{n-2} + a_{n-1} + a_n$ is							[]	
1	A) 1	B) 2	C)3	D)4						

Prepared by P. Sasikala& Rukmani